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Abstract

Let n be a superprocess under the measure P. We show the existence
of probability measures which are absolutely continuous with respect
to P, and whose Radon-Nikodym derivatives are suitably normalized
exponential functions of the self intersection local time of 5. These
measures correspond to measure valued processes exhibiting a cer-
tain amount of self interaction. A finite time divergence of the total
mass (1,7,) is shown to occur in a related model in which the change
of measure involves the occupation measure of the superprocess. As
an independently interesting side issue we also obtain a number of
results related to a self-interacting version of the Feller diffusion
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1 Introduction and main results

1.1  On interactions

Our aim in this paper is to study the effect of certain exponential changes of measure
for inducing an internal interaction on the behaviour of superprocesses.

The basic object of study will be a super Brownian motion (SBM), {n:}o<i<cT, With
T > 0, and finite. SBM arises naturally via an infinite system of branching particles
that alternately perform Brownian motion and undergo critical branching, for a de-
tailed description of which we refer the reader to Dawson (1993) and the references
therein. While we shall be motivated by, and use the language of, this particle system
(and the relation between additive functionals on the particles and the superprocess
as in Adler 1992) we shall, throughout the paper, work exclusively with the limiting
Superprocess.

The (self) interaction that we wish to apply to the superprocess is one which will
cause the “particles” to be attracted either to one another, or to a particular region
of space. Broadly speaking, there are two ways in which to do this.

The first, which we shall not develop here, but is interesting in order to understand
some of our results, follows from the fact that SBM can be expressed via the solution
of a stochastic partial differential equation, describing the time and space flow of
particles. This is particularly well described via the so-called “historical process” of

Dawson and Perkins (1991) and Perkins (1992).

In this setting it is possible to modulate the diffusions of individual particles, by
having them attract, or repel, one another, much in the way that the generator of a
finite system of independent diffusions is adapted to yield interaction. This approach
was developed in Perkins (1992), and extended to more singular interactions in Adler
and Tribe (1996a,b). In all of these cases, it is well known that the new processes
are singular (in terms of the probability measures they induce on path space) with
respect to the original SBM.

The second approach, which we adopt in the current paper, involves finding more
delicate changes that leave the new process absolutely continuous with respect to
the old. Attempts to do this via extremely delicate changes of the diffusion seem
to be doomed to failure. (cf. Adler and Ivanitskaya 1996 for an example.) Thus we
adopt an approach developed initially for defining a self-avoiding Brownian motion
(Varadhan 1969, Westwater 1980, 1982). The idea here is to look at the process over
some fixed time interval [0, 7], and make one global change of measure that favours
interacting paths. Note that this is quite different from the above approach, since
under this new measure the new process will no longer be Markovian. It is also



different from previous changes of measure dating back to Dawson (1978) in which
only the branching mechanism of the superprocess was affected, and not the particle
motions. '

To describe our approach more precisely we need some notation.

1.2 The superprocess and the Feller diffusion

With T > 0, let 7 be a canonical process on the space D([0,T], My(R%)), where
M;(R?) denotes the space of finite measures on R%. For any m € M;(R%), and « real,
let P,, 1. be a probability measure on D([0,T), M¢(R?)) such that under P, 1, the
process 77 is Markov and its distribution is characterised by

B ae™<Im> = g=(w%m), (1.1)
where E’m,T’a denotes the expectation under Pm,T,o,, f € By, the space of non-negative,
bounded, measurable functions on R¢, and u is the unique strong solution on [0, 7]
of the partial differential equation

17,

Here A is the d-dimensional Laplacian. We shall write P and E for Pm,y,o and Em,T,O
respectively.

When o = 0 in the above, the resulting measure valued process is super Brownian
motion (SBM). If @ > 0 (a < 0) the corresponding process is SBM with additional,
constant rate, mass creation (annihiliation). The reason for adding this extra mass
term will become clear later.

We denote by X; the total mass of the process 7, that is
Xe = (Lin) = U(%d)-

As is well known, X; itself is a nice Markov process on D([0, T}, R), generally known
as the “Feller diffusion” and satisfying the stochastic differential equation

dXt = O[dt + \/Xtth, (14)
with Xo = (1,70) = (1,m) > 0, and W a standard Brownian motion.

If o =0, then X dies (i.e. reaches zero and stays there) in finite time. If & > 0 then
X is positive for all ¢ > 0, but a.s. finite for each t. If @ < 0, then, since X can
become negative, we shall stop it at 7o := inf{¢ : X, = 0}.

We denote by P, 7. the distribution of X induced by Pm,T,a, where (1,m) = z and
denote by E; .o the corresponding expectation operator.
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1.3 Change of measure via SILT

In this subsection, set a = 0 in (1.1), so that we are dealing with a standard SBM.
We make the following assumption for the whole of this subsection:

Assumption: In addition to being finite, the initial measurem has a bounded density
with respect to Lebesgue measure.

For any € > 0, an approximate self-intersection local time (SILT) for the superprocess
7 can be formally defined as

. T T
JT = /(; dt/o ds 1{|t—s|>6} (6(«7; - y)7 ns(dx)ni(dy))7

where § is the Dirac delta function. J¢ is well defined for d < 7 (Dynkin, 1988).
There is no problem sending ¢ — 0 in dimensions d < 3, and renormalised versions
for this limit exist for d = 4,5. (Adler 1992, Rosen 1992).

We can now turn to our first change of measure. Motivated by the true self-avoiding
Brownian motion (or “polymer process”) we would therefore like to consider, for
d < 7, the probability measure on D([0, T, M;(R?)), defined by

Q< (dw) = —:A—J%—P(dw) 2> 0. (1.5)
m,T E(e’\‘]'%) 9

Unfortunately, however, the following 1s true:
Lemma 1.1 For all €, T > 0, we have that E,,(eMt) = oo.

The proof of the Lemma, which depends on computing the moments of J5, is defered,
along with all other proofs, to the following section.

As a consequence of Lemma 1.1, there is no way to work directly with the definition in
(1.5). One possible way around this, that was successfully adopted in Adler and Iyer
(1997) to construct a self-attracting Brownian motion, is to consider the sequence of
measures

T (%)

5 ?:0%(J%)j)P(dw), n> 1. (1.6)

Qi (dw) =

and approach the measure (1.5) via weak convergence as n — 00, and, perhaps, also
as € — 0.




Dynkin (1988) has shown that £(J)? is finite for d < 7. Conditions for the existence
of the second moment of the approximate SILT of order n are also given in the above
paper. Similar moment calculations can also be found in Rosen (1992) and Feldman
and Iyer (1996). A proof of the fact that E(J%) is finite for d < 7 and all j > 1 is
given 1n the Appendix.

The main result of this paper, which indicates that a program as described above
should work, is

7,€,A

Theorem 1.2 The collection of probability measures {QmT >0n>1 18 tight in di-
mensions d < 7.

Nk1€ky

Thus, given {n,e€x}r>1, the sequence of measures {QmT *} contains at least one
subsequence that converges weakly in D([0, T}, M{(R?)), that may be used to define
a limiting polymer measure. We shall have nothing to say about the uniqueness (or
otherwise) of this limit. However, we shall investigate a few of its properties.

Comment for Robert We may have something to say about uniqueness.

Of course, while Theorem 1.2 gives us a candidate for a new polymer process, it does
not tell us that the new process is any different from the old. (This is a non-trivial
issue, in view, for example, of the aforementioned problems with interesting looking
interactions at the particle level that disappear in the infinite density limit.) The
following result indicates that the polymer measure is quite different from the initial
superprocess measure, in at least a number of ways.

Theorem 1.3 a. For all A > 0,

hi(d,T,t
i1 4+ 2B 1 <<

. e vy
lgjl:glEm’T( t) - { |m| + T2__(77:_t)2 4 < d (1.7)

where hy and hy are positive, bounded functions.

b. Forall A\ >0 and4<d<T7T

lim lim Ep5N(X,) = En(X)) (1 + 1) t>0. (1.8)

n—o0 510 Im,

Note firstly that for the basic SBM we have E(X,) = |m], for all ¢ > 0, and all d.
Thus, (1.7), (1.8) tell us that not only is the polymer measure different from that of
SBM, but it also involves “creation of mass”. Looking back at the formulation (1.6)



of Q’:,;C’TA, and, more simply if not so precisely (1.5), it is clear that, under Q, SILT is
enhanced. In the development of a regular polymer measure for standard Brownian
motion this means that the particle path must be changed. Here, however, there are
two ways to increase SILT: One is by moving the paths, the other is by affecting the
branching so that the total mass (and so SILT) is increased. Theorem 1.3 indicates
that the latter is certainly happenning here. How much interference with the particle
motion in being generated by the change of measure, and how the two effects can be
uncoupled, is currently unclear.

Comment for Robert Another point to be made is that when we first send ¢ to
zero and then send 7 to infinity, the expected value of the total mass of the limiting
process has a jump at ¢ = 0, and then it stays constant as opposed to the case of fixed
n, when there is a continuous increase in the expected total mass. This suggests that
things may be different in the limit. This is similar/a contrast to the fact that even if
we start with an absolute continuous mass the SBM immediately becomes singular.

A second rather interesting consequence of (1.7) is that, at least for dimensions 4 <
d < 7, we do not recover the basic SBM by sending the interaction strength parameter,
A, to 0.

As an interesting aside, note that even the case of fixed n and € = 0 gives a measure
different from that of SBM. This result is at variance with the result for the case of
the attractive polymer model for the Brownian motion (admittedly a different — but
similar looking — problem) where keeping n fixed and sending ¢ to zero lead us back
to the Brownian motion (Adler and Iyer 1997).

Theorem 1.4 The underlying Feller (total mass) process is uniquely determined un-
der the limiting probability measure limy, . lime (o QmT, for dl T >0 and A > 0 in
dimensions 4 < d < 17.

Despite the fact that J& is not exponentially integrable, we do not lose the exponential
integrability of the basic superprocess in the following particular case.

Theorem 1.5 Let4 < d <7 and f € By. Then the limits of the sequence En6 A(e(f ’7‘>)
are finite when we first let € — 0 and then take the limit n — oo, for ¢ < (C’HfHoo) ,
where C = 1+2(1V |m|™H)(AVT).

1.4 Change of measure via occupation measure

Given the fact that when changing the probability via SILT we (inadvertently?) in-
troduced a mass creation term, it seems interesting to look at a simpler model as well.



Thus, in this section we shall introduce interactions in such a way that the process
favours more mass in certain locations of the space.

For ¢ € B, define the occupation measure (or “man hours” cf. Iscoe 1986a,b) process
+ P P

w(@) = ) = [ (b ds (1.9

and consider the new measure defined by

g erkr(d) |
Qo1 oldw) = pr,T,a(dw), A>0. (1.10)

If, for example, ¢ has compact support A, then what we have defined is a measure
valued process that favours realisations putting most of their mass in A. Again, what
is not clear is whether this is done by redirecting the individual particles to drift
towards A, or by generating mass creation in A. In SILT model we saw an increase
in total mass, but could not say much beyond that.

However, if we take ¢ = 1 then some simple analysis of the total mass process (i.e.
the Feller diffusion) shows that the mass creation is so intense that in general the
process will explode in fixed time. This is described below in the following section,
which is essentially independent of the remainder of the paper.

A more careful analysis of general ¢, and, in particular, of the particularly interesting
case when ¢ = §, so that the occupation time is replaced by the local time, will be
the object of a future study.

1.5 The reinforced Feller diffusion

As before, let X; = (1,7,) be the total mass process: i.e. the Feller diffusion (1.3) and
pe = f¢ Xsds = pe(1). Consider the following change of measure, which, along with
the remainder of this subsection, has nothing to do with superprocesses:

eMHT

A _
Px,T,a(dw) - E(eA“T)

Pora(dw), X >0. (1.11)

Since this change of measure clearly defines a process that likes to take high values
we shall call it a reinforced Feller diffusion. (Of course, the term “diffusion” here is
somewhat inappropriate, since this process is not Markovian!)

It is actually possible to explicitly compute the Laplace transform of X; for 0 <t < T,
under the new measure, and the result is surprisingly dependent on the values of
and A. Here are some sample results:



Theorem 1.6 Let A\,c >0, and set v = X\ — a? /4. Then, for all0 <t <T,
()

exp{+/X z tan[v/At — tan 1 (= telT=0VA) )}

EX po(e™%) = 1.12
=10l ) exp{VA z tan(v/AT)} (1.12)
(11) If v > 0, then
e/ tan(tan™! (52=)+/7(T-1))
exp{—+/7 = tan[tan™!( L -/}
B} (e7X) = v Ll v (1.13)

exp{\/Y :ctan[ta,n“l(#) + T}
(i) If v = 0, then

(1-2(T-1)-5
exp{— e pTha—2 =7 z}
E;\’T’Q(C_CX‘) _ 1-2(T—-t)+( (1 S(T-1)) (1'14)

exp{—%= =y z}

(iv) If vy <0, let B = /—7. Then

Ve oxp{mw )
Ea:,T,oz(e ) - exp{ wT .22} (115)
where, , ,
.« B —1) + (c— $)(e™ +1)
ROl Ve ey ) (116)

An unexpected corollary of the above is that, under the new measure, if T approaches
a particular (o, A dependent) time, mass creation is so fierce that the corresponding
processes diverge to +oo in finite time. More precisely,

Corollary 1.7 (Ezplosion of mass) Let  be as in the previous theorem. Let A > 0.
() Bhpole) = 0 as T 1 355

(4) If v > 0, then E 1 (e ‘CX‘) —0asTT(5- tan—l(ﬁ))—ﬁ.

(i#i) If « > 0 and v = 0, then E) 5 (e7%) = 0 as T T 2/cx.

(iv) If 4 < 0 and & > 26, then Elg.,(e"%) 0 as 71 g5ln ($5).

A number of additional properties of the reinforced Feller diffusion are given in Sec-
tion 3 below. While they seem to be of independent interest, and so are included
there, they are not related to the main theme of this paper.
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2 Proofs and supporting results

Given the form of our change of measure, it should come as no surprise that most of
the proofs of the results in subsection 1.3 will be based on an analysis of the moments

of SBM.

Dynkin (1988) derived what is now a well known explicit representation for these
moments in terms of the transition densities p;(z,y) and binary graphs. Since his
representation will form the backbone of the proofs, we include it here for the sake of
completeness.

2.1 Moment Formulae for the Superprocess

Let Dy be the set of all directed binary graphs with k exits marked 1,2,... k. Given
such a graph G, let L be the set of directed links and V be the set of all Vertlces If
the link [ € L goes from vertex v € V to vertex w € V, we write v = i({),w = f(I).
We associate with each element v € V' two variables,

(Svayv) € §R+ X §Rd7

which we refer to as the time and space coordinates of v. We denote by V_ the set of
all entrances of G; i.e. the set of all vertices v € V such that no arrow ends at v and
there is only one arrow that begins at v. For any v € V_ we set s, =0 and y, = z,,.
If v is the exit labeled by 5, 1 < j < k — that is, v is such that there is exactly one
arrow which ends at v and no arrows begin at v — we set

(‘va yv) = (tjazj)‘
Finally, let V, denote the set of internal vertices; i.e. those vertices that are neither

entrances nor exits.

Let pi(z,y) = Pz —y) = (2nt)"4?exp(~|lz — y||*/2), t > 0, be the standard
Brownian transition density, and set p, = 0 if ¢ < 0.

Theorem 2.1 Letn be a super Brownian motion. Then, for all k> 1,t;,...,tx >0
and fla' . ')fk € B-l-)

2 (Mn) = 5 00, 1)

DeD,

where

k
Cp "/ H m(dz,) Hpsf(l)"si(l)(yf(l) _:‘/i(l)) H dSUdy“Hfi(zi)dzi' (2'2)

veEV_ lel vEV, =1



For detailed examples of how these formulae are applied see, for example, the original
paper of Dynkin (1988) and Rosen (1992). Adler (1992) explains the relationship of
Theorem 2.1 to the particle picture.

2.2 Preliminary (but crucial) estimates

In most of the calculations that follow, we shall be interested in deriving moment
estimates in which the crucial issue will be identifying (negative) powers of the pa-
rameter ¢. It can be seen from the proof of Theorem 1.3 that the exact computation
of the moments are both extremely involved, and, fortunately, unnecessary for our
purposes. Since most of the techniques involved in estimating these moments have
already been explored in great detail in Dynkin (1988) and Rosen (1992), the proofs
tend to be a bit sketchy at times, although we do hope that we have covered all the
important points.

We start with some general moment bounds, in which f(€) = g(e) means that there
exists a constant ¢ such that lim._¢ f(€)/g(€) = c.

Lemma 2.2 Ford <7,

En(J5) Y C(m,d, D)(In T P13+ p(d, D, ), (2:3)
DeDy;
where 0 < k(D) <j,0<¢(D) <j—k(D), and
_ [ |p| 1<d<3

o(D,d) = { |D| — 2k(D) 4<d<T (24)

1 1<d<3
b(d,D,¢) =4 (In(e))*®?) d=4 (2.5)

¢~ (d—4)k(D)/2 5<d<7

~v(D) is non-negative if d is even and zero otherwise. While we will indicate were this
extra logarithmic term in (2.3) arises when d is even in the proof, we shall avoid the
extra algebra involved by treating, in detail, only the cases when d is odd.

Proof of Lemma 2.2. Recall that

‘ J
(‘]6)3 = H /(6(17 - y)’ 77tzi—1(dx)ntzi(dy))l{ftze—l—t2£|>e}dt2i—ldt2i (2'6)
=1



> Cp, (2.7)

DeDy;

where,

CD ]:[/ / 1|t2.-—-t2‘ 1]>cdt21dt21—— / H m d.’l, ps](l) s,(,)(yf(l yz(l) H ds dvadZu

eV veV, 1=1
(2.8)

where on account of the delta function we have y,) = 2; if 55y = t2i, t2i-1.

Note first that for the graphs that contribute to E(J¢)? the exit nodes, in the notation
of (2.2) are all labelled (¢x,z:), k=1,...,25,1=1,...,7

We say that two exit nodes ({x, z;) and (s, z;) are paired if there is an internal node
labelled (s,y) such that there is an edge connecting (s,y) to (tx,2) and (Z, z;). Here
is a preliminary calculation for paired nodes:

Consider the term corresponding to any graph D. Let the graph D have 1 <r < 25
entrance nodes; i.e. r sub-trees. Let |D| denote the number of edges in D. Suppose
for some k£ = 1,...,7 the nodes (f3x-1,2;) and (tax,2x) are paired. (Note that the
space variables associated with the exit nodes with time variables ¢5;_1 and {5; are
identical as a result of the delta function appearing in the definition of J¢.) We shall
call nodes paired this way as twin pairs. For twin pairs, integrating with respect to
2z (and applying the Markovian nature of p;) leaves the external integral involving
tor—1 and g in the form

1
(27)"
If d = 4, then ¢,(d,T — s,€¢) =~ In(e)/2. If 5 < d < 7, then (d,T — s,¢) =
(4/(d — 4)(d — 2))e@=9/2 Thus, if 4 < d < 7, (2.9) diverges as ¢ — 0 and the

important terms are those that diverge in e. If 1 < d < 3, then (2.9) is bounded in €
and we can take € to be zero, to get ¢;(d, T — s, ¢) = (20482 /(d — 4))(T — 5)~1¢=4/2,

o [ dkrdta ot o (b + tar =25 = 6 (T —5,6) (29)

With this preparation behind us, we start the main computation for evaluating a
typical term in (2.7):

Integrate out all the j—space variables corresponding to the 2j exit nodes. For all
exit nodes that are twin pairs, also integrate with respect to the time variables as in
(2.9). Suppose there are 0 < k(D) < j twin pairs.

Integrate out all the internal space variables as shown in the appendix. This is
standard fare. Ultimately we arrive back to the outermost integral with respect to
m(dz), and here we have to work a little harder, since while in the appendix (as is
the usual case for these computations) we are interested in general upper bounds here
we shall require more precision.
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Recall the assumption that m(dz) = f(z)dz, for some f € B4(R?). A generic outer-
most term will now look like

[ mldz)pa(z,v)an(s, v)dsdy = [ Tof()go(s, v)dsdy, (2.10)

where T, is the heat semigroup and gp(s,y) is the term obtained by integrating out
all the space and time variables, except for the space/time variables corresponding to
the first edge from the root in the sub-tree with entrance node labelled (0, z).

i From the appendix we know that [ gp(s,y)dsdy < oo. Moreover gp(s,y) and T f(y)
are strictly non-negative functions on [0, 7] x ®¢ and (0, T] x ¢ respectively. gp and
T f are continuous functions on (0,7] x ®¢. Let K., be any sequence of compact sets
increasing to R?. Then, for some sequence (s, ¥n) (2.10) is equal to

lim / T f(y)9p(s,y)1k. (y)dsdy = lim T, f(yn) / gp(s,y)dsdy, (2.11)

a fact which follows from the mean value theorem applied to the function T;f(y)
integrated against the measure gp(s,y)lx,(y)dsdy. Since 0 < Ts,f(yn) < [[fllec We
have that T, f(y.) converges to some cp € (0,]|f|l) as n — oo (since the right side
of (2.11) converges to the left side of (2.10)). Consequently,

/ m(dz)ps(z,y)gp(s,y)dsdy = cp / gp(s,y)dsdy.
[0,T)x R4

v
X

If we use the above technique judiciously, as in the appendix, we can integrate out
all the transition density functions associated with the internal edges while integrat-
ing out the internal space variables. Now we can integrate out the remaining time
variables corresponding to the remaining exit nodes in a manner similar to (2.9). In
evaluating these integrals we can take € = 0. If s = (s1,,...,51;_,py) are the time
variables corresponding to the internal vertices of the graph D that are connected to
these exit nodes, we can write this factor as

Higm(D)(ri(T> s))”
C3(D, d) ’

where r;’s are linear combinations of T' and the components of s, and 3 e; = —c(D)d/2+
2(j — k(D)), and 0 < ¢(D) < (5 — k(D))/2. Note that each s;, will occur as an argu-
ment in exactly one function r;. In case d is even, it is here that we will get factors
containing logarithms of r;’s. This will make the subsequent calculations very messy.

A note here on the exact value of ¢(D). This will be used later in the proof of
Theorem 1.2. To compute c(D), we integrate as described above all the twin pairs.
We can also integrate out the space variables corresponding to the exit nodes for
which one of them is on a subgraph with only one edge. Now consider the residual

11



graph. In this graph, suppose that the exit nodes are labeled z1, .. ., z,. We partition
21, - ,2, into disjoint sets S, ...,S, such that the exit nodes in the distinct sets are
on different subgraphs. Then, ¢(D) = ¢. Since of the remaining j — k(D) pairs of
nodes there are no twin pairs, the maximum value of C(D) will be as given above. For
example, for the graph in figure 5 in appendix ¢(D) = 1. For the graphs (z),(z2) and
(v) in figure 4, ¢(D) = 0, whereas for the graphs (7i%), (¢v), (vz) and (viz) ¢(D) = 1.
This leaves us with |D| — 2 internal time variables that on integration yield a factor
T'P1=% [¢,(D). For example, in the case r = 27, cs(D) = 1. If r = j and all the
exit nodes are twin pairs, then there are j internal time variables and c4(D) = ¢'.
Note that the exponent of T' in our estimate will be —¢(D)d/2 + |D| — 2k(D), for
4 < d <17, and will equal —¢(D)d/2 + |D| for 1 <d < 3. In case d is even, there will
be additional terms in In(T').

We now claim, and will prove below, that

j < |D|— 2k(D) < 4j. (2.12)

It is now easy to check that the bounds of the Lemma are obtained by simply putting
e = 0 in all the terms that do not diverge as ¢ — 0. In fact, we can now write the
following estimate for E,,(J¢)’ :

En(J¥ ~ 3 C(m,d, D)T~*7+P:Ay(d, D, ¢), (2.13)
DgDy;

where b(d, D, €) equals 1 if 1 < d < 3, equals (In(e))¥®) if d = 4 and is given by
¢~ (@-9kD)/2 if 5 < d < 7. k(D) is the number of twin pairs in D. a(D, d) is given by
|D] if d = 1,3 and equals [D| — 2k(D) if4 <d <7,and 0 < ¢(D) < 5.

This proves Lemma 2.2, except for the inequality (2.12).

Since |D| — 2k < |D| < 4j, the right hand inequality of (2.12) is trivial. For the
left hand inequality, observe that we can associate atleast three distinct edges of D
with each twin pair, and that there are k twin pairs. Furthermore, with each of the
remaining exit nodes numbering 25 — 2k we can associate atleast one distinct edge.

Thus, subtracting 2k from |D| corresponds to taking into account only one of the
three edges associated with the paired nodes, so that

\D| — 2k > 3k —2k) + (2§ —2k) =2 —k > j

This proves the claim. n
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2.3 Proofs of the main results

Proof of Lemma 1.1. Since J§ is positive, it is enough to bound from below the
contribution to E(J%). We do this by restricting our attention to complete binary
graphs. The case j = 2 of such a complete binary graph is illustrated in (2.3). There

Figure 1: Complete binary graph with 4 exits (j=2)

will be 2j! terms associated with a complete binary graph. This, together with the
estimate for E,, 7(J&)? obtained above, gives us that

N AV A —d/24+1\i (951 %]

j_|Em,T(JT) > }TC(m,d, D)Yo(d, D, e)(T Y(25)! = 0(5?), (2.14)

for lai‘ge 7. This implies that

> j—'Em,T(J})j — 00, as n— oo. (2.15)

i=0

This proves Lemma 1.1. |

Proof of Theorem 1.2. In order to prove tightness of the family of measures
{QZ?{F}QLOO, we start with a bound for E:L’f:}f\((f, 7:)%). Recall that

: o 51 Bn({f 00" (1)
B (fim)) = == g néz)e)(j -
m\JT

=1 3!

(2.16)

We will compare En({f, n7)*(J5)?) with E,,(J5); i.e. the corresponding terms in the
numerator and the denominator. Clearly,

En((fmr)B(I8)7) < NI B (3, me)*(T5)7) (2.17)

13



Let
BV = Y Cpi and En((Lu)*(Us)) = S Chy  (218)

DeDy; D'€Dajyx
where, as before, D,; is the set of all binary graphs with 25 labelled exits.

Any D' € Dy can be obtained from a unique D € D;; in one of the following two
ways:

(1) Add a graph D” € Dy, to the graph D as a seperate component. The sum over all
graphs D’ € D,;4 obtained in this way will give a term of the form

En(1,m)* B (5. (2.19)

(2) Take a graph D" € Dy. Let D" have 1 < r < k components (that is 7 entrance
nodes). We attach 1 < p < r of the components of D” to the edges of D. This can
be done in

S P N e R

(2.20)
ways, where, A(p,!) = {p1,...,pi : pi > 0,1 = 1,..., [, pi = p} and a = |D].
Truly speaking, (2.20) is an over estimate, since one has to divide in the innermost
sum by the factorials of the number of p;’s that are identical.

Observe that the space variables in the inserted graph D" can be integrated out, since
the function associated with the exit nodes in this graph is the constant function 1.
After doing this, the space variables of the p internal nodes at the points where the p
components of D" have been appended to the edges of D can also be integrated out.
Next we deal with the time integrals coming from the inserted part. If D” and D are
as illustrated in Figure 2. then, inserting D" into D on the edge going from the node

(09x1) (O’X2)
(s, y)
(tozl) ([,Z2)

/1

Figure 2: Two graphs pre-insertion
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(0,x,)

l (8% )

(84, %)

(s,,9,) /\(\53,5@)

(s,y)

(t’zl) (tsz)

Figure 3: Graphs of Figure 2, post-insertion

labelled (s1,1) to the node (s3,y2) gives the graph illustrated in Figure 3. Note that
the node (0,z) has been changed to (s4,1). The term corresponding to the graph
D" (considered as a seperate graph) is

/m(d:c) /Ot ds/dy ps(z:,y)/pt_s(y,zl)pt_s(y,zg)dzldzz =|m| /Ot ds. (2.21)

Thus the factor corresponding to the inserted part D" into D as shown in Figure 2.3

will be
¢ ¢
/ dsS/ ds. (2.22)
S4 0]

Consequently, replacing the lower bounds in all the time integrals of the first internal
node from the root of any component of D" by zero (in the above example we replace
the lower bound of the integral w.r.t. s from s4 to 0) we get a factor that is bounded
by |m| P Em(1,7:)* |pn, where Em(1,7,)* |pn is the contribution to En(1,7:)* coming
from the graph D". This leaves us with a graph that looks identical to D except for
an additional p time integrals (created at the points of insertion of the p components
of D" into D).

Carrying out the estimation of the term as in the proof of Lemma 2.2 and using (2.20)
we obtain

Bl (I < En(Ln) En(JY + Y, D Z( )

DEDy; DDy p=1
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P
p P—N P—...—Pi-2
XZZ ( )( )‘.'< >p1!...pl!><
1=1 A(p.) P P2 Di—2

C(lml, D, e, e
XiEZI (Il D) 2 (h 7 p)

E’m(la 77t)k ID”

, (2:23)

L

where I = I(D, D" py,...,p) is the index set of all possible insertions of p out of the
r components of D" into the graph D, divided into groups with p; of the p components

in the :—th group, ¢ = 1,...,l. The ; factor is the number of ways in which we

can choose p components out of the r components. [ is the number of groups into
which we divide these p components. The subsequent [ — 1 combinatorial factors in
(2.23) are the number of ways into which the p components can be divided into !
groups. Components in each of these [ groups is inserted into a distinct edge of D.
After insertion the p; components can be permuted in p;! ways, which accounts for
the factors p;!-- - pil. Note again that we should have divided by the factorials of the
number of identical p;’s, but since we are interested here in an upper bound, we ignore
this factor. A = h(p, D) = —c(D)d/2 + a(D, d) is the same as in (2.3). The following
lemmarelates the constant C(|m/|, D, ¢,7) with the constant C(m, D, d) of Lemma 2.2.
Denote by I’ the subset of I that contains all the insertions of the subgraphs of D"
which leave the number of twin pairs in D unchanged.

Lemma 2.3

~ .. ) C(m,D,d) 1<d<3
C(Iml, D], 1) = { C(m,D,d)b(d,D,e) 4<d<Tandiel (2.24)

where b(d, D, €) is as given in Lemma 2.2. Whent € I — I,

C'(m|, D,d) < oo d=4,5,
C(|ml,|D},¢,3) < { C(m, D,d)b(d, D,€)O(—In(¢)) d =6, (2.25)
C(m, D, d)b(d, D, €)O(e) d=1.

Proof of Lemma 2.3. If 1 < d < 3, then in this case there is no divergence in e.
So we can replace all the epsilon by zero and carry out the calculations as described
prior to the statement of Lemma 2.3. In case 4 < d < 7, note that each twin pair
contributes a factor b(d, D, €)1/*D) to the divergence of the moment E,,(J%). When
¢ € I', the number of twin pairs remains unaltered and the calculation as above gives
the constant as in the statement of Lemma 2.3. When i € I — I, the number of twin
pairs in the graph is reduced. When a twin pair is disturbed due to the insertion of
some of the subgraphs of D", the integrals associated with this twin pair will diverge
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at a slower rate. To see this, consider the case when a component of D" is inserted
into the edge leading to the exit node labelled t;, in a twin pair labelled ¢; and 2,.
The twin pair which was contributing to the divergence of the moment at the rate
¢~(4=9/2 (see 2.9), now gives a term of the form

1 T T t1AL d/2
W/ / dtZk—-ldtﬂcl{ltzk—tZk_l|>e}/ dS] (tgk_l + tzk - 23)— (226)

which is O(—In(e)) for d = 6, O(¢™'/?) for d = 7 and stays bounded for d < 5. It is
easily seen from the calculations that insetion of more components will lead to more
integrals in (2.26). The result will be that the term will remain bounded in € for
d < 7. This proves Lemma 2.3.

Writing the result of the above Lemma succintly, we can say that C(|m|,|D|,¢,1) <
C(m,D,d)b(d, D,¢), for all : € I. The cardinality of I is |[D|(|D| —1)--- (|D|-1+1).
Using these two facts and simplifying, we can bound (2.23) by

Bull 0 < Eftn Bn0y 4 2 5 32 (7 )t (2.27)

DeDy; D"eDy p=1
IDI(1D] —1)---(ID] — 1+ 1)
(h+1)(h+2)...(h+p)

1

14 ~
x 3 3 C(m, D, d)b(d, D, )T Em(L,7:)" | Do o

=1 A(p,l)

where C,b and h are as in Lemma 2.2.

We now derive a bound for h. Qur aim is to show that the fraction |D|(|D| —
1)---(|D] =1+ 1)/h(h +1)...(h + p), appearing in (2.27) is bounded by a constant
depending only on k.

Claim: j < h(d,D) < |D|.

Proof of Claim: Since d < 8, b > —4c¢(D) + a(D,d) = —4¢(D) + |D| — 2k(D).
Obviously h(d, D) < |D|. k(D) equals zero when 1 < d < 3, and equals the number
of twin pairs for 4 < d < 7. We divide the 2j exit nodes in D into three categories:
The ones that form twin pairs, the ones that contribute to ¢(D), and the rest. For
each twin pair, we can associate three distinct edges in D. With each group of nodes
that contribute one unit to ¢(D), we can associate at least six edges (for it takes at
least four exit nodes with no twin pairs to add to ¢(D)). With the remaining exit
nodes we can associate at least one distinct edge. Thus we have,

ID| > 6¢(D) + 3k(D) + (2] — 4¢(D) — 2k(D))
> 95+ 2¢(D) + k(D)

So,

)

h> —4e(D) +|D| - 2k(D) > 2j —2¢(D) — k(D)

AV
[\
I
[N}
—
.
|
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3
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where we used the fact that ¢(D) < (5 — k(D))/2 (see proof of Lemma 2.2).

Using the above claim and the fact that |[D| < 47, we get the bound |D|(|D] —
D---(|D] =14+ 1)/h(h+1)...(h +p) < 4% since I < p <r < k. This together with

! ) in (2.27) yields the bound

l

the inequalities p! < k!, |[A(p, ()| < (p:l

En(Lp)*(JY < En(l,n)*En(JY +4C) K S Y C(m,D,d)b(d, D, e)T* x

D€D2j D"eDy

; ) EP: ( Il):ll ) Em<1’77t)k |Dws (2‘28)

=1

where Cy = (1 V |m|™1)(1 V T). Since 3¢ ('I;) < 2k, we get
En(Ln)*(J) < En{l,q)*Ea(JY + (16C1)* k! Bn(1, 1) En(J°)
(14 C* ENE (1,0 En(J¢). (2.29)
iFrom (2.16), (2.17) and (2.29), we conclude that
En g (f,m)* < IR+ KO B (L, n0)". (2.30)

Tightness of the marginals now follows from the boundedness of the moments.

To complete the proof, we show that for any positive function f € CZ(R?), such that
IFIl+ 1Af]F < 1,

En((fym) — (fyma)]* < Op(t — 8)™ (2.31)
We know that (see Dawson (1993), Theorem 4.7.2, Proposition 7.3.1)
Enl(fine) = (f,n:)]* < Op(t = s)7. (2.32)

Note that we cannot apply the martingale approach of Proposition 7.3.1 from Dawson
(1993), since the measure M appearing there is no longer a martingale under the new
law. We can, however, follow the method employed in proving Theorem 4.7.2 there,
which involves expanding the fourth power of the difference inside the expectation and
then carrying out a direct computation, using the boundedness of f, the contraction
property of the Brownian motion semigroup and the relation

ITf = Tofll = IAFI(E = o) (2.33)

The calculation essentially involves a clever juggling of the ranges of integration of
the time variable associated with the exit nodes. To analyse (2.31), expand the fourth
power of the difference on the left after writing the expectation E as a ratio. Each
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term in the numerator involves evaluating a moment of order 25 + 4. We divide the
graphs contributing to the 25 + 4 moments into two parts as done while evaluating
Eom(1,7:)(J¢)’. The first part consists of attaching separate graphs from Dy to graphs
from D,;. This will give a term Cr(t — s)>. The second part consists of those graphs
that can be constructed by inserting graphs from Dy into the edges of graphs from
D,; as done earlier in this proof. Consider the terms in the expansion that correspond
to the same graph from Dy; into which a graph from Dy (this graph will be same for
all the terms except that the time variable corresponding to the exit nodes will be
different) is inserted. The factor coming from the graph from D,; is common to all
the terms and can be factored out. The inserted parts can now be analysed exactly
as in the proof of Theorem 4.7.2 (Dawson, 1993). This gives us a factor (1 — s)%. The
remaining terms can evaluated exactly as in the proof of Theorem 1.2. This will give
us a bound for the required expectation of the form

(Cr+ C(T,d, D, |m|))(t - )2 = Cp(t — s)?,

which completes the probf of tightness. |

Proof of Theorem 1.3. a. So as to avoid some cumbersome integrals involving
logarithms in even dimensions, we shall prove the result only for odd values of d < 7.
Filling in the even values requires patience, but no further ingenuity. We start with

T ty
Fe=2 dtn [ dtafo(e —v).na(do)na(dy))

and first evaluate E,(J°).

Em(Je) = 2/ET dt, /(:1 dt, [/ m(dz1)m(dz2)ps, (21, 2)ps, (T2, 2)dz+

2/m(d$)Ps($)y1)Pt1—s(y1,Z)Ptz—s(yl,z) (2.34)
The first term can be written as
T i1
2 [“dt: [ dtalm, Tipsea ) = A5(T), (2.35)

where we denote by f the density of m w.r.t. the Lebesgue measure. The second

term gives
T 1 to oy
4/ dtl/ dtg/ ds|ml(t; + ts — 25)
€ 0 0

which equals

(d —2%! —4) {(d : 6) % s T —er- g (- 6)6—%1} (239
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M (i) (iii) (iv)

hspace*1.0truein ™) (vi) (vii)

Figure 4: A graph for the compuation of E,,(1,7:)J5.

We now proceed to evaluate E,,(1,7:)J5. Diagramatically, we can express this moment
as in Figure 4. The first two graphs add to give [m|E(J¢). The third graph corresponds
to

T t—e (t11t)
4 / dt /0 dty /0 ds /m(dw)m(d'y)ps(x,yl)pc_s(yl,w)ptl_s(yl,Z)ptz(y,Z)dyldzdw

T t1—¢ (tlf\t)
= 4/ dt1/0 dtzfo ds/m(d:cl)m(d:vg)pt_1+t2(x1,:1:2) = AS(t,T) (2.37)

Similarly, the fourth graph gives a contribution of A§(¢,T"). The fifth graph gives a
contribution of

d—6

1 e
+(d_6){—3e 2 +

1 (T—e)z_(T—t—e)z]

R

- ! g {ler - 975 — T 2 — ™ 48T )75 - T"%ﬁl}}}] (2:38)

The remaining terms can be similarly evaluated. The point to note here is that for
4 < d < 7, the only terms that will matter in the ¢ — 0 limit are those of order
e~(4=4/2_ All the terms that we have not evaluated explicitly here will diverge at a
slower rate. In the case d < 3, all terms containing multiples of € will vanish leaving
a ratio that will look like the one given in the statement of the theorem. In this
case terms coming from all the graphs will matter. Furthermore, since each of the
integrals we evaluated is positive for all €, the result follows.

b. To prove part (b), we will write a finer version of (2.23) for the case k = 1. See
proof of part (a) above for illustrations. Fix n > 1. As € — 0, only the terms with the
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highest order of divergence in € will be relevant. From Lemma 2.2 and (2.23), (2.27),
we can write

Fme)  Enl{L, ) ()]

m,T (1:77t> ~ Em(J‘)" ’ (239)
as € — 0. As is now routine, we divide the numerator into a sum where a graph in
Dins1 is obtained by considering the graphs in Dy, and adding to them the graph
in D; as a seperate component. This on dividing by the denominator gives the term
E,.(1,7)) = |m]. We now focus on the second part. In course of the derivation of
(2.23), if we use the fact that the effect of insertion also restricts the range of the
time variables in the graph D, (see argument following (2.22)), then we would have
ended with a factor T"t? — (T — t)**? instead of T"*7. Further as € — 0, only those
graphs in Dj,, matter, for which there are n twin pairs (see Lemmas 2.2,2.3). We
index the set of such graphs by &,. For any D € &, k(D) = n, and C(D) = 0. So
k(D) = |D| — 2n. Now for the combinatorics part. The number of ways in which we
can insert the only edge of the graph D” € D; into a graph D € &3, so as not to
disturb the number of twin pairs (see Lemma 2.3) is |D| —2n. So, in the limit € — 0,
(2.39) behaves like

i~ e, Clm, D, (e, D, )T - (2= )il
Ypee,, C(m, D, d)b(d, D, e)T* : :

Im| +

As n — oo, b = (|D| — 2n) — oo, since 3n < |D| < 4n, and so (2.40) converges to
im| + |m|™'T.

This proves Theorem 1.3. I

Proof of Theorem 1.4. Using the same arguments as in the proof of Theorem 1.3,

we can write _ \
: B [(L, 1) *(J)"]
En,e,/\ l, k ~ S
'm,,T ( T]t> Em(‘]c)"

as € — 0. Again proceeding as in Theorem 1.3, we rewrite (2.23), by using the precise
limits of integration while integrating the time variables. Then we simplify to get
a form similar to (2.27. As above we note that as ¢ — 0, only graphs in &, will
matter. Now, in the n — oo limit, since h — oo, the only combinatorial factor that
will balance with the denomintor (see (2.27) are the ones for which [ = p, that 1s
p;=1,fori=1,...,p, le.

ID|(|D]=1)---(ID] =1+ 1) _%{1 ifl=p
(ID] 4+ 1)(ID] +2)---(ID] + p) 0 otherwise

e > 1, (2.41)

b iy

(2.42)

So, in the limiting procedure prescribed in the statement of the theorem, (2.41)
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behaves like

i v | Loven, Ln{l,n) | pe 0y P(T,t,p, D") o= Lpes,, C(m, D, d)b(d, D, e)T*

E..(1,
e Toeen. C(m, D, d)b(d, D, 1" ’
| (2.43)
where P(T,t,p, D") is a polynomial of degree p in ¢,T. Thus we have proved that

1
m|™?

(2.44)
Repeating the above arguments, we can show that the mixed moments of the process
X are unique under the given limits. This proves Theorem 1.4. |

lim limE:;f{r’\(l,nt)k = B, (1,n.)* + S EL(1,m:)F|pn > P(T,t,p,D")

n—+00 ¢|0 D"eDy p=1

Proof of Theorem 1.5. It is clear that exponential integrability will follow once we
get an appropriate bound on the the moments of {f, 7:)* < || flleo (1, 7:)*. From (2.23),
(2.27) and the arguments in Theorem 1.4, we have P(T\,t,p, D") < P(T,T,p,D") =
TP < (1VT)E P(T\t,p, D”)]m|1’"“1’ < C¥ where C; = (1VT)(1V|m|™"). This together
with (2.44) gives

lim lim Em5 (1, 70" < En(1,70%(1 + (2C1)%) < CFEn (1, m0)*. (2.45)

n—00 ¢l0
This implies that

lim lim E
n—00 |0

it (fone)* < (CIFI* B (L, me)* (2.46)

The result now follows from the exponential integrability of the Feller diffusion; i.e.
from the fact that F,,e’™m) exists and is finite for all £ < -1,

Proof of Theorem 1.6. By definition,

E:z; T a(e—CXt+>\uT)

Eé\,T,a(e_CXt) = Ey1o(e*r) (2.47)
Let v denote the unique solution of the following differential equation:
%:avt—vz—)\; vy = c. (2.48)
Iscoe (1986) has shown that
B o€~ mHA fo‘<¢,ns)d5) _ ™ m) (2.49)
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3]

where v/ is the unique solution of the non-linear initial value problem:

Sue

5 = (A+a)ut—u2—/\¢
w = f. (2.50)

When the functions f and ¢ are constants, then u no longer has a spatial depen-
dence. The denominator in (2.47) can be written as exp(—zvy™?). Using the Markov
property and homogeneity the numerator can be seen to be

a0
exp(—xvf’/\’cHT" ). (2.51)
Proving Theorem 1.6 now involves verifying that the denominator and the numera-
tor in the various cases satisfy the requisite differential equation. For example, the
denominator in case () on the right can be easily seen to be exp(—zv%’\’o). We leave
the straightforward verification of the other cases to the enthusiastic reader and so
conclude the proof of Theorem 1.6. n

Proof of Corollary 1.7. The corollary follows immediately by noting that in each
case, as T' approaches the critical value, the denomiator tends to +00, while the nu-
merator stays bounded. |

3 Some results for the reinforced Feller diffusion

Any number of moment formulae and relationships can be gleaned from the formulae
in Theorem 1.6. Here are a few illustrative examples.

Corollary 3.1 Let v be as in Theorem 1.6. Let A > 0.
(i)
P z sec*(\V/AT)

roX) = sy ()

(i)
ﬁsecQ(\/X t)[tan(\/x T)— tan(vA(T —1))]

Var) ro(Xi) = 7 s AT =) (3.2)
(i1) If v = 0, then .
E)po( X)) = Gt L)) (3.3)
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(w) If y =0, and a <0, then
lim E) 7 (e7%) = Ey(e7X) = eme=/+et), (3.4)

T—o00

where the right side of the equality is the Laplace transform of a Feller diffusion.
(v) Let o« = —2v/X. Then,
Jim E;70(Xe) = Eron(Xe) = ze. (3.5)

Remark: Result (v) says that, depending on A and «, the expected reduction in
mass in time for the reinforced Feller diffusion and a simple Feller diffusion with a
mass annihilation term are almost identical for large T'. The distributions in the two
cases are, however, quite different. '

Proof of Corollary 3.1. The corollary is an immediate consequence of Theorem 1.6
and the equalities

d
Ei\,T oth = _d_Ei‘T a(e_CXt) |C=0 (36)
1 c thatn
and
A 2 d2 A —cX
Ea:,T,aAt = @Ez,T,a(e t) |C=0 (37)
|
Corollary 3.2 (Eztinction Probabilities) Let A > 0 and let v be as above.
() |
aze”
Poro(Xi=0) = . .
roli=0) = o {221 35)

(i) If y >0 and 0 < T < % (% - tan‘l(#)) , then

VAt + ta,n(tan—l(

T

P;\’T,Q(Xt =0) = exp{—\/yz[tan( 5

«

57 HVATD (39)

(1)) If y =0 and 0 < T < 2/ if & > 0, then

2—a(T—t

PraXc=0) = L) (3.10)

(iv) If v <0 let B = +/—7. Then

1_e2ﬁt (ﬁ-g)ezﬁT—(ﬂ+9—)
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Proof of Corollary 3.2 The corollary follows from Theorem 1.6 and the equality

Plr (X =0) = lim E}p (e™) (3.12)

T\ c—00

4 Appendix

For completeness, we shall now discuss the finiteness of the moments of the approxi-
mate self intersection local times J¢. While this result is similar to others that have
appeared in the literature, it is, in fact new.

Theorem 4.1 E(J¢) < oo forallj >1, T < o0 and d <T.

Proof. We only give a sketch of the proof. The reader is referred to Dynkin (1988),
Rosen (1992) and Feldman and Iyer (1996), where similar results can be found, for
the details on evaluating moments similar to the one below.

Let RE(s1,52,51 — ¥2) = [ dt1dlaps, 1,61 -5, (1 — ¥2), Where B = [0, T]* N {(t1,22) :
|t; — t2] > €}. Recall that

I = [ (8 =), 1 (do)ne (dy) dtrdo,

so we can write
o
(Jey = H /B<6(22i_1 — 29:)s Ntnsy (d22i-1)tyi (d22i) ) dboi_1di;.
=1

E(J¢) = Y pep,; Cp- Consider a term Cp. We separate our analysis of Cp into the
following cases:

(1) If the exit nodes labelled (t3i—1,22:—1) and (t2:,22:) are paired, that is they have
an immediate common ancestor labelled (s, yx), then integrating w.r.t. zo; and 2z9;_1
and using the fact that

/})22(1 8(z1 — 22) f(z1)g(22)dz1dzq = L\d f(w)g(w)dw, (4.1)

i

we obtain a factor

ReB(Sk’Skao) - /B dt2i-ldt2ipt2i—1+t2i~2sk < clBie—d/Q- (4'2)
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So we can bound the contribution coming from all the paired nodes.

(2) If at least one of the exit nodes zy;_; or 2y, is connected to a root (entrance) node
labelled (0,z;), then we get a contribution [m(dz) [ dtai_1dteiPiy;_y +tpi—s (Yr — T1).
Using the bounded density of m we integrate out z; to see that the above term is
finite.

(3) Now, of the remaining exit nodes whose space variables z;’s are left to be inte-
grated, none of them are paired or are connected to a root node. (These have been
taken care of in the above two cases). Suppose there are 2r remaining z;’s. If zy; and
zg;—1 are connected to the internal nodes labelled (s, yx) and (s;,v:), then integrating
with respect to zo; and z;_; using (4.1) gives a factor R(sk,s1,yx — yi). Since there
are 2r z;’s to be integrated, we will get r factors that look like R(sg, si, yx — y1). Each
(sk, yk) occurs in exactly 2 of the R's. Make suitable change of variables (see Feldman
and lyer, 1996, for details) w; = yx — yi, such that {y:,,...,¥i,, Wi, ..., Wer—p} spans
R4, Since each function R in the integrand has an argument that is a difference of
the y’s, upon change of variables all the R’s will have arguments depending only on
the w’s. Furthermore, each w occurs in exactly two of the R’s. Also to be noted is
the fact that one cannot have w; — w; occuring as the sole argument in two of the
R’s.

First integrate out all the variables y;,,...,y;,. Now using the bounded density of m,
if necessary, one can integrate out all the internal space variables. This will leave us
with the factors R and the time integrals only. Now we integrate with respect to the
w’s. If one has a factor [ R?(sy, s3,w;)dw;ds;ds,, it can be written as

/ dsyds, /B 2 pt1+t2+13+t4_231_232(0)gdti < T /[()’T]‘ﬂ(t1 iyt ts 4 tg)“”i]jj[1 dt;
< oo ford < 7. (4.3)

A factor of the form ~,
/dsld32d33/R(sl,s2,w1)R(51,33,wg)R(sz,s;;,wg — wy)dw; dwadws (4.4)
arising out of the configuration shown in Figure 5 is bounded by T° fi 736(t: + ... +

ts)"d/2dt1 ...dtg is finite for d < 11. Similarly we can check that the more one has
to integrate w.r.t. the w’s, the smoother the integral becomes. the worst case being
given by (4.3). We conclude the proof of Theorem 4.1. n
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